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estimates (8.11) - (8.15) are preserved. The theorem is completely proved. 
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We determine the gyration numbers of the dynamic systems arising on the two- 
dimensional invariant tori in Kowalewska’s problem. We have shown that they 
equal the ratio of the periods of a hyperelliptic integral containing the Kowalew- 
ska polynomial. Using the general theorem on the reduction of equations on an 
n-dimensional torus, proved in the paper, the differential equations on the two- 

dimensional invariant tori mentioned are reduced by an invertible change of 
variables to the form cpi = oi where oi = const, i = 1, 2. We prove also that 

in the case of rapid rotations of the body the combined levels of the four first 

integrals of the problem consist of two tori ; the dynamic systems arising on these 

tori are isomorphic. 

1. Remark, on thr topological proportia of the combined la- 
vel, of ffrrt lntrgrrlr. The Euler-Poisson equations of the problem of the mo- 

tion of a heavy rigid body around a fixed point form an analytic system of differential 
equations defined in fi8 {z : pqryIy2ys}. There is an integral invariant in this system, 
whose density M (z) E 1 (i.e. the phase volume is invariant relative to a one-para- 
meter group gt of shifts along the trajectories of the Euler-Poisson equations). These 

equations always have three algebraic first integrals: the energy integral (H), the area 
integral (L) and the geometric integral (r). If the rigid body is a Kowalewska top, 

then there exists a fourth algebraic integral K. 
By E we denote the following set: 

E = {x : H = 6h, I, = 21, I? = 1, K = k2} (E C R’) 

It is compact, since the set {H = 6h, r = I} is bounded in R6 and E is closed. 
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It is clear that E is invariant relative to group g’. It is obvious thet those values of 
parameters 6h, 21, k2, for which the first integrals depend upon E, form a set of mea- 
sure zero. Everywhere below we consider only such sets E on which the first integrals 

are independent. In this case E is a smooth two-dimensional manifold. 
We denote the restriction of group gf onto E by gEt. From Jacobi’s theorem on the 

last factor (see Cl]) follows the existence on &’ of a Jordan measure v (r) invariant re- 

lative to BE’. Consequently, the triplet (E, gEt, Y) is a classical dynamic system (see 

[2] for the definition). The task of the present paper is the study of such systems. 
At first we investigate the topological properties of manifold E. There are no singu- 

lar points of the system of Euler-Poisson differential equations on E l In fact, singular 
points correspond to steady-state rotations (or to relative equilibria) of the body. But, as 

proved in [3] the integrals of energy and moment in these solutions are related. We have 
stipulated that such cases are not to be examined here. 

Manifold E is orientable. Hence, each connected component of E is a two-dimen- 

sional torus (as in every connected orientable compact two-dimensional manifold ad- 

mitting of a tangent vector field without singular points: for example, see [2]). It is 
not difficult to prove that for small values of parameter p - the product of the body’s 

weight and of the distance from the center of gravity to the suspension point - the ma- 

nifold E consists of two connected components. 

2, Calculation of ths gyration numbart. Authors of papers devoted to 
Kowalewska ‘s problem have used equations of motion in the Kowalewska variables s,, 
$2, wherein complex quantities enter explicitly Cl]. This gives rise to specific inconve- 
niences when investigating the real motions of he system. The imaginary quantities can 
be avoided by writing the equations of motion in the following form: 

J&gq f 1/-“$) = Oy 

sldsl dt 

f-(D(Sl)+ v-+-y - 
(2.1) 

cp (2) = (2 [(z - 342 + p - k21 - 2pT) (2 - 3h - 
k) (z - 3h + k) 

Let us prove that in a real motion the variables s, and 8, take real values, To do this 
we write out the formulas, due to Kowalewska, which express si and ss in terms of the 

Euler-Poisson variables ~~~~ys~s) [I] 

$1, 2 = 3h f 
R (Xl,Q) =F: yr7i(21)R(zz) 

(Xl - x2)2 
(2.2) 

xl.,2 = p _t iq, R (z) = - .z* + 6hz2 + 4 plz + p2 - k2 

R (q, 52) = - x12q2 + Ghqr, + 2pZ (xl + ~2) + p2 - k2 

It is obvious that x2 = zi, xl = T .Ls(here the overbar denotes the complex conjugate). 
Since R (q, x2) and (x1 - xs)s are symmetric polynomials in x1 and xs with real 
coefficients, they take real values only. Further, the expression 

R (x1) R (zy) = R (i-c& R (51) = R @I) Rx’ 

is obviously nonnega~ve. The realness of variables s,, ss now follows from formula 

(2.2). 
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From formula (2.1) it follows that 

inequalities CD (.sl) < 0, @ (ss) < 
when the polynomial CD (z) has five 

Fie. 1 

the region of real motions is determined by the 

: 0. Fig,ure 1 shows the region of possible motions 
real roots (it is unhatched). Motion cannot take 

place in regions 3, 5 and 7 since points si 
and s, such that si = ss exist within these re- 

gions, It then follows from (2.2) that R (xl) = 
R (5%) = 0. Since R (z) is a fourth-degree 
polynomial, the equation R (z) = 0 can have 

no more than four roots for fixed constant first 
integrals. Therefore, no more than four points 
at which st = ss exist on the invariant tori. 
But there are infinitely many such points in re- 

gions 3, 5, 7. 
Thus, motion can take place only in regions 

I, 2, 4, 6, 8, 9. In order to study this mo- 
tion we rewrite Eq, (2.1) as 

d.91 v- @ 01) 
- = 2 (St - s2) ’ dt 

ds2 

TE = 
- I/-@(se) 

2 (a- S%) 
(2.31 

Let the initial conditions for S1, .ss lie in one of the six regions indicated and let both 
radicals in (2.3) be positive at the initial instant. For definiteness we assume that si > .s~ 

(Le. motion occurs in regions 6, 8, 9). Then, at the succeeding instants ss increases, 

while ss decreases, This will go on until st (or ss) reaches a root of the polynomial 

cf> fz) or goes to infinity. Note that s1 (or ss) goes to infinity in finite time. This 

follows from the convergence of the integral 
,t 

5 

zdi 

_. r- 0 (2) 

where U is the smallest simple root of 6, (2). For example, let si reach a root of @ (2) 
or go to infinity. Then the radical in the first equation of (2.3) changes sign and at the 

succeeding instants s1 decreases. This goes on once again until .sl (or ss} reaches a 
root of polynomial @ (2) or goes to infinity. And so on. 

Let us show that for small values of p the real motion takes place in “sleeves” 1 and 
9. At first let p = 0. We ascertain in which region the initial values for sl and S? 

fall. For p = 0 the polynomial @ (z) is independent of the constant area (21) and 

has the form 
@ (2) = z (z - 3/z - k)2 (z - 3/z -;- k)” 

The energy integrals and the Kowalewska integral are written thus: 

H : p2 + q2 + r2 J 2 -= 3h, K : p2 + (I” := k (k > 0) 

It is obvious that on any of the two connected components of set 03 =3h, K = k2} 
in R3 {pqr) there exist points whose p-coordinates equal zero. Let us examine these 
initial conditions. Then from (2.2) we get that si = 0, s, = 3h -+ k. Note that the 
root (3h - 1~‘) of polynomial CD (z) lies to the xight of zero, since 3h - k = P’ / 
2 > 0. Hence, in this case the region of real motions is st < 0, s2 = 3h f k. 

IVOW let f~ + 0, but be very small, Then, s1 varies from - CG up to a number 
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close to zero (since z = 0 is a simple root of polynomial @ fz) when p = O), while 
ss is contained between two numbers differing but little from 3h + k. Consequently, 
for small values of the parameter p real motion takes place in regions 1 and 9. 

We pass on to the computation of the invariants of the dynamic system (E, gnt, Y) , 
namely, the gyration numbers of the tangent vector fields on E (which are induced by 

the Euler-Poisson equations). To be specific we examine the two-dimensional invariant 
tori which correspond to regions I and 9 on the plane R2 {sir s2} (or we take the para- 
meter p as being small). We denote the roots of polynomial CD (z) by a,, a,, us, us, a,; 
they are arranged in increasing order. Region I in Fig, 1 is determined by the inequal- 

In Eqs. (2.3) we make a change of variables sr = si (x), sz = sz (y) by formulas 

Then, z, y ( E [O, 2~~1) are angle variables on the invariant tori T2 (6h, 21, k’), 
corresponding to the regions of form 1 under the Kowalewska replacement (2.2). In the 

new variables 2, y mod 2n Eqs. (2,3) reduce to the form 

n 2 Jc 1 

f = zn s&) - s&c) ’ y = 222 5%(y) - a(z) (2.5) 

where the si (z) are real hyperelliptic functions with period 2n, determinable from 

relations (2.4). Equations (2.5) have an integral invariant with density F (2, y) = 

Sl(3 - s2 (y); this function does not vanish anywhere. From (2. 5) it follows that the 

gyration numbers of the dynamic system (T2, gkt, Y) equal y = ‘c2 / zi. Hence, the 
gyration numbers of dynamic systems on the invariant tori of Kowalewska’s problem 
equal the ratios of the periods of the hyperelliptic integral 

5 v-@k, s 
where @ (z) is the Kowalewska polynomial. 

BY Liouville’s integrability theorem (4~ differential equations on Ta (6h, 21, k2), 
defining the dynamic system (T2, gks, Y), reduce in certain angle variables ql, 
v2 mod 2n to the following form : 

Consequently, the dynamic system (T2, gfTp, Y) is completely determined by one in- 
variant, namely, the gyration number y = 0, / 0 2. 

Note 1. For any dynamic system on a two-dimensional torus of the form rpi’ = 
oi (i = 1, 2) there are in fact an infinite number of gyration numbers, but they are 
all expressed in terms of the one y = wi / o a by means of the relation 

r-/y+6 
I cy’ 

where 
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is a rectangular matrix. In particular, 1 / y is also a gyration number. 
For the tori corresponding to region 2 in Fig. 1 the gyration numbers are given by for- 

mula (2.6). We note that the gyration number for region 9 is the same as for region 1. 

Hence, for small p the dynamic systems arising on two connected components of set E 
are isomorphic. 

Note 2. The gyration numbers of vector fields on the two-dimensional invariant 
tori of the Euler-Poinsot problem are computed in [5] and some of their properties were 
indicated there. In the Lagrange-Poisson case the gyration numbers equal the ratio of 
the period of variation of the nutation angle to the period of the mean natural rotation. 

3, On the rsductfon of diffar6~ti~l equrtlonr OR a torus. The sys- 
tem of equations (2.5) can be brought to a yet more simple form. Since equations of this 
form are frequently encountered in investigations of integrable dynamicsystemswe examine 

the general case of such equations specified on an n-dimensional torus T” 

qi’ = 3Li / P (Qi, . . . , qn), i z 1, * . - 2 n (3.1) 

hi = const, F = fl (qJ + . . . + f, (g,J; F > 0 i< 0) on T” 

Without loss of generality we can take all the, Ai as nonxero. 

Theorem, If fi (qi) (i = I, I * s 7 n) are continuous functions, then system 

(3.1) is reduced to the form 

by a differentiable change of variables. 
TO prove this it is sufficient to verify that one such change of variables is the follow- 

ing : 

Cpi = + i-?- [Fj (4j) - IjPjl + 4 
j=l hi 

i 

Fj (t) = $ fj (x) do, Ij = & Fj (24, I = II + . . . + I, 

0 

This theorem is applicable to Eqs. (2.5) and yields the following result : a change of 

variables exists, leading the equations to the system 

. R f Jt 
u =m’ u=222n 

(3.2) 

2x 

ii 

2x 

A=& ' s&b+- 1 Sz(Y)&I 1 (A>0 01: <O) 

a 0 

Here zi (i = 1, 2) are the periods of the hyperelliptic Kowalewska integral. The given 
transformations consist only of algebraic operations, of the computation of integrals of 

known functions, and of the inversion of these integrals. Thus, Eqs. (3.2) defining condi- 
tionally-~~~i~ motion of two-dimensional invariant tori, are those same equations 

which should exist by Liouville’s integrability theorem. 
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We propose quantitative estimates of the indeterminacy of the prediction of the 

motion of a controlled system described by ordinary differential equations. 

1. The motion of a controlled system is specified by the equation 

dx / dt c F (t, x, u (t)), t fE I, I = (t : t,<tt(t*l (1.1) 

where IC = (x1,. . , , 5,) and u = (ul, . . . , u,) are vectors in real n- and r- 

dimensional spaces &m and R,’ , respectively, t is time, t, is a number, t, is either 

a number or the symbol 00. The norm I( zfl = maxi [Xi 1 is defined in space &“, The 

vectos I = pi (t),a t E I characterizes the state of the controlled system, u = u (t), 
t ES 1 is ar, input whose graph o = {(t, .u): u = u (t), t E I} belongs to an ad- 
missible set a = {o}, w It,, tj is the restriction of w onto I&, tl 0 1. 

Suppose ihat a solution of system (1. l), starting on a given open set Tro C: Rxn, ex- 

ists for all t E I at arbitrarily chosen o E QR; t (t) -q (t, t,, r,,, o it,, tl), ~F=I, 
is any surh solution, where 

2 (to) = ZQ E v, (L2> 

Let SS (x0) = {b, : [ b, - GJII < l/s a), 6 > 0 b e a ball which characterizes the 
regio:i of admissible initial states of system (1. I), if the possible measurement errors of 
the controtled system’s initial state are taken into account, At an instant t E 1 we 
consider the set S,, of states of system (1.1) on all possible motions of it (on the graphs 
of the solutions in 1 X a,*) starting from Ss (q,) for a specified o E Q. 1n other 

words. Sot = Qt, (Ss CGJf) is the image of the ball ss (t,), where @t is a mapping 


